Syllabus for Methods and Practice of Scientific Computing (NERS 570/ENGR 570)

Course Description:

This course is designed for graduate students who are developing the methods, and using the tools, of scientific computing in their research. With the increased power and availability of computers to perform massive and complex simulations, computational science and engineering as a whole has become an integral part of research that complements experiment and theory. This course will teach students the necessary "skills" to be effective computational scientists and how to produce work that adheres to the scientific method. A broad range of topics will be covered including: software engineering best practices, computer architectures, computational performance, common algorithms in engineering, solvers, software libraries for scientific computing, verification and validation, and how to use all the various tools to accomplish these things.

Course Objective

Upon successful completion of the course students shall be able to

- develop and run software in Linux,
- write code in multiple languages,
- use compilers and Makefiles,
- write their own linear solver
- compile and use third party libraries,
- work in software projects with other individuals,
- develop version controlled software,
- implement automated testing in a software project,
- increase the computational performance of their software
- write code that uses MPI and/or OpenMP parallelism,
- perform simulations on high-performance computing resources,
- debug programs more efficiently

Syllabus for Methods and Practice of Scientific Computing (NERS 570/ENGR 570)

Course Schedule

Date	Lecture	Lab	Торіс
	1		Course Overview & Introduction to Linux
	2		Programming Languages: C, C++, Fortran
		1	Introduction to Linux
	3		Scripting with Bash and Python
		2	Scripting
	4		Elements of Development: Configuring, Compiling, Linking
	5		Tools of the Trade: Version Control, Dev. Env
		3	Introduction to Great Lakes and Git
	6		Algorithms for Linear Algebra
	7		Solving Linear Systems (Part 1) Classical Methods
		4	Matrix-Matrix Multiply and Third-Party Libraries
	8		Solving Linear Systems (Part 2) Krylov Methods
	9		Solving Ordinary Differential Equations
		5	PETSc and Krylov Methods
	10		Software Engineering
	11		Object Oriented Programming and Design
		6	Workflows in Practice
	12		Architecture and Design
	13		High-Level Design and C++
		7	More Workflow and Sprint Planning
			FALL BREAK
	14		Serial Architecture, Performance, and Optimization
		8	Micro-Benchmarks and Measuring Performance
	15		Parallel Architecture and Performance
	16		OpenMP
		9	Parallel Computing: OpenMP
	17		The Message Passing Interface
	18		Advanced MPI
		10	Parallel Computing: MPI
	19		Heterogeneous Architectures
	20	1	Programming models for GPUs
		11	Hardware Abstraction with Kokkos
	21		Testing Verification and Validation
	22		How to write a Unit Test
		12	Automated Testing Infrastructure
	23		Using Jupyter Notebooks with HDC
	23		Profiling and Debugging Tools
	24		Patrospactive and Miscellaneous
	23		OPENIAR Work on Term Projects
	26		Term Project Presentations
	20		Term Project Presentations
	21		remi rioject Presentations

Optional Course Modules				
Topic			Description	
Testing,	Lecture 1		Testing, Verification, and Validation	
Testing,	Lecture 2		How to write a Unit Test	
Testing		Lab	Automated Testing Infrastructure	
Data and	Lecture 1		Data Format Libraries: HDF5, NetCDF, SILO	
Mesh	Lecture 2		Mesh Libraries: Libmesh, Exodus, others	
Libraries		Lab	Working with Data Libraries	
Package	Lecture 1		Package and Dependency Management with Spack	
Management	Lecture 2		Containers: Docker and Apptainer	
& Containers		Lab	Spack and Apptainer on Great Lakes	
Duthon for	Lecture 1		Using Jupyter Notebooks with HPC	
Python for	Lecture 2		Packages for Scientific Computing	
HPC		Lab	TBD	
Debugging	Lecture 1		Debugging: DDT, GDB, and Valgrind	
and Profiling	Lecture 2		Performance: MAP, HPCToolKit, TAU	
Tools		Lab	Make it work; Make it fast Debug and Optimize	

Optional Course Modules

Anticipated Homework Assignments

HW	Description	Supporting	Due
		Lectures	Date
1	LaTeX and Programming in C/C++ and Fortran	1,2	
2	Some Linear Algebra Kernels	2,4,6	
3	Linear Algebra Solvers	2,4,6,7,8	
4	Workflows	8,10,11	
5	Extra-Credit		

Anticipated Lab Assignments

Lab	Description	Supporting	Due
		Lectures	Date
1	Hands on walkthrough of Linux.	1	
2	Bash and Python Scripting	2,3	
3	Hands on walkthrough of Great Lakes	1-4	
4	Matrix-Matrix Multiply and TPLs	4-6	
5	PETSc and Krylov Methods	4,7-9	
6	Workflows	5,6,10,11	
7	More Workflows	10-13	
8	Micro-benchmarks and performance	14	
9	OpenMP simulated annealing parallel programming.	2,7,15,16	
10	MPI simulated annealing parallel programming.	2,4,7,15,17	

Project Assignments

Deliverable	Description	Due Date
Proposal	3-5 page document	
Presentation	10-20 minute presentation	
Report	10-20 page typed document	

Lecture			
1	None		
	Modern Fortran		
2	C/C++ programmer's reference		
2	Bash Quick Start Guide		
3	Learning Python		
4	None		
5	Pro Git		
	Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods		
	Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide		
	Finite Difference Methods		
	Finite Element Methods		
	The Method of Weighted Residuals and Variational Principles		
	Multigrid Methods		
	Matrix Algorithms Vol. 1 and Vol. 2		
6.0	Iterative Methods for Sparse Linear Systems		
0-9	Model Reduction and Approximation		
	Accuracy and Reliability of Scientific Computing		
	Accuracy and Stability of Numerical Algorithms		
	recuracy and Submity of Pumerical Augorithms		
	LAPACK User's Guide		
	ScaLAPACK User's Guide		
	Numerical Recipes in Fortran (Online PDF)		
	Numerical Recipes in C (Online PDF)		
	Scientific Software Design: The Object-Oriented Way		
	The Unified Modeling Language		
10-11	Design Patterns		
	Code Complete		
	Agile Development in the Real World		
12-13	Numerical Linear Algebra for High-Performance Computers		
12 10	Performance Optimization of Numerically Intensive Codes		
	Patterns for Parallel Programming		
14-16	Parallel Processing for Scientific Computing		
	Using OpenMP		
	Using MPI		
	Using Advanced MPI		
	Verification and Validation in Scientific Computing		
	Better Scientific Software		

Associated Readings and General References:

